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Abstract

A third-order self-excited oscillatory system in the neighbourhood of a stable local integral manifold is investigated. A periodic
manifold and a corresponding system in amplitude-phase variables are constructed with approximately the required accuracy.
Using the procedure of separation of variables (averaging) the conditions for the existence, uniqueness and stability of self-excited
oscillation modes are established, and critical cases of the degeneracy of these conditions are considered. A thermomechanical model
of the self-excitation of oscillations inherent in gas-dynamic systems with a heat source is taken as an example. The bifurcation
pattern of self-excited oscillations in the space of the governing parameters of the system is investigated in the second approximation.
© 2006 Elsevier Ltd. All rights reserved.

Self-excited oscillations of systems with one degree of freedom have been investigated in detail in a number of
theoretical (see Refs. 1–5, etc.) and applied (see Refs. 3,5–8, etc.) publications. The main mathematical techniques used
to investigate them are different versions of the small-parameter method (perturbation theory) and qualitative (topo-
logical) phase-plane methods. The problem consists of determining the conditions for the existence, uniqueness and
stability of limit cycles, and also an approximate calculation of the main characteristics of the self-excited oscillations
(the amplitude, frequency, form of the limit cycles, etc.). A numerical-analytical method of accelerated convergence
was recently used in Refs. 8 and 9 for the effective construction of the periodic motions of self-excited oscillatory
systems for small and moderately large self-excitation coefficients.

Much fewer results have been obtained for self-excited oscillatory systems of higher order than the second. We
note the investigations of quasi-linear self-excited oscillations of two coupled second-order radio circuits using the
Lyapunov-Poincaré methods.3 Quasi-linear self-excited oscillations of a Helmholtz resonator with a thermodynamic
self-excitation mechanism were investigated in Ref. 10 for the three-dimensional Teodorchik model.7 Using asymptotic
methods of non-linear mechanics, a local integral manifold of the system was constructed in Refs. 11,12. It enables one,
with the required degree of accuracy, to represent a self-excited oscillatory system in standard form for amplitude-phase
variables and also enables the averaging method13,14 to be used.

Third-order self-excited oscillatory systems are often encountered in nature and technology. We note the following
phenomena: geysers, variable-brightness cepheid-type stars, self-excited oscillations in chemical and nuclear reactors,
vapour “singing” in the pores of a thick layer of scum, and gas pulsations in the combustion chambers of jet engines.
Investigations of such systems, both analytically and numerically, are of interest from the theoretical and applied points
of view. The solution and analysis of such problems for small and moderately large self-excitation coefficients, leading
to bifurcations of the self-excited modes of oscillation, is of considerable importance.

� Prikl. Mat. Mekh. Vol. 70, No. 4, pp. 555–567, 2006.
E-mail address: bayd@ipmnet.ru (V.G. Baidulov).

0021-8928/$ – see front matter © 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jappmathmech.2006.09.004

mailto:bayd@ipmnet.ru
dx.doi.org/10.1016/j.jappmathmech.2006.09.004


L.D. Akulenko et al. / Journal of Applied Mathematics and Mechanics 70 (2006) 504–515 505

1. Formulation of the problem

Consider a three-dimensional non-linear self-excited oscillatory system containing a basic subsystem, namely, a
second-order quasi-linear section and a one-dimensional self-excitation subsystem. We will assume that the equations
of motion, in dimensionless variables, have the form

(1.1)

Here 0 < � � 1 is a small parameter representing the effect of the excitation variable �ϑ and the perturbations �f on
the main variable x. For these � the parameter � and the function g (together with f) define a local integral manifold of
system (1.1), to which it tends as t → ∞, where t is the dimensionless time.

In the traditional case of a system with one degree of freedom we will assume � = �−1g(x, ẋ), and the quasi-linear
self-excited oscillations are described by the first equation of (1.1). If g = �g∗, g∗ ∼ 1, we have ϑ → g* as � → ∞
according to the theory of singularly perturbed differential equations [15].

For the general situation considered here (� ∼ 1) we will convert system (1.1) to standard form.11–14 We will first
represent it in the form of a third-order equation by differentiating the first equation of (1.1) with respect to t and
eliminating �, �̇, so that we obtain the required relation

(1.2)

Note that this is quasi-linear, despite the considerable non-linearity of system (1.1). When � = 0 the characteristic
exponents �1,2,3 of Eq. (1.2) and its general solution x0 have the form

(1.3)

where A1,2,3 are arbitrary constants. As t → ∞ the solution x0 (1.3) approaches the 2�-periodic function x∗ = a sin�,
where a is the amplitude and � = t + �0 is the phase; the constants a and �0 are defined in a known way in terms of
A1,2.

To use the method of local integral manifolds11,12 we will replace the variables (x, ẋ, ẍ) by (a, �, z) in Eq. (1.2):

(1.4)

The unknown z represents the local integral manifold of the system mentioned above.
Differentiating expressions (1.4), by virtue of the perturbed Eq. (1.2) we obtain the required system of standard

form13,14

(1.5)

The function F* (1.5) is obtained by substituting expressions (1.4) into the function F from (1.2). The right-hand
sides of the equations are 2�-periodic in � and fairly continuous in a and z. If the condition f = g = 0 is satisfied when
x = ẋ = 0, which is usually the case in applied problems, the function � (and also the functions A and Z) will be
regular for all a ≥ 0. Otherwise, instead of the amplitude-phase variables (a, �) we will introduce osculating Van der
Pol type variables (a, b) and make the replacement

(1.6)

For (a, b) we obtain Bogolyubov standard equations. The advantages of these equations is the absence of singularities
when a, b → 0, if f, g �= 0 when x = ẋ = 0, but a drawback is the increase in the order of the system: the right-hand
sides depend on a, b, z and are 2�-periodic in t.

Further, for system (1.5) we will construct a local integral manifold, described by the expression z(a, �, �) with the
required degree of accuracy in �. It is substituted into the equations for the variables a, �, which define the possible
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self-excited oscillations of the system. Further investigations are carried out by traditional asymptotic or regular small-
parameter methods.1,3,13,14 The averaging method enables us to simplify the construction of the approximate limit
cycle considerably in (x, ẋ, ẍ) space and to analyse the transient.

2. Construction of the local integral manifold

After a relatively short time �t = �−1 ln(|z0|�−1) system (1.5) arrives from an arbitrary state z(0) = z0 to an �-
neighbourhood of the state z = 0 and performs motions in the neighbourhood of the manifold z = �h(a, �, �).11–13 The
unknown h is a 2�-periodic function in � and regular in a, �, and is constructed as the solution of a first-order partial
differential equation, which we will denote by primes with corresponding subscripts.

We have

(2.1)

where A, � and Z are functions of the unknown h and specified �, a and � in the permissible region of their variation.
For sufficient smoothness with respect to a of these functions the unknown h can be obtained with a required degree
of accuracy in � by the asymptotic expansion

(2.2)

The coefficients hj (j = 1,2, . . .) are defined as 2�-periodic solutions of a sequence of inhomogeneous linear equations,
the right-hand sides of which are calculated recurrently using the known expressions for h1, h2, . . . , hj−1 and the
corresponding coefficients of the expansions of the functions A, � and Z after substituting expression (2.2) into Eq.
(2.1). As a result we have equations which determine the required hj

(2.3)

Here and henceforth the zero subscript denotes that the value of the function is taken for z = 0. The coefficients H∗
3 , H∗

4
are calculated similarly using the quantities h∗

1, h
∗
2, . . . , h

∗
j−1 obtained. The required 2�-periodic solution h∗

j (a, �) of

Eq. (2.3) can be represented in the form of an improper integral, or a trigonometric series11–13

(2.4)

If the function F turns out to be a polynomial in x, ẋ, the expansion of the function H∗
j in a trigonometric series

contains a finite number N = N(j) of terms H
∗c,s
j,n , which increases as the subscript j increases.

Together with the standard procedure for the expansion of the unknown variable h in powers of � (2.2), to find the
periodic solution of Eq. (2.1) one can use the recurrence method of successive approximations equivalent to it

(2.5)

Here H
∗c,s
(j)n are the Fourier coefficients of the function H∗

(j), which is constructed using previous approximations
h∗

(1), h
∗
(2), . . . , h

∗
(j−1) and is 2�-periodic in �. Note that when constructing the solution in the form (2.2)–(2.5), the
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order of the derivatives with respect to the variable a of the functions A, �, Z, i.e. of the initial function F (1.2) with
respect to the variables x, ẋ, increases. Expansion (2.2) or the recurrence procedure (2.5), generally speaking, diverges
as j → ∞, and the solution has an asymptotic form. Its accuracy in powers of the small parameter � is determined by
the degree of smoothness of the functions in the variable a.

After substituting the expression obtained z = �h* into the equation for the amplitude a and the phase � (1.5), we
have a standard system of the form

(2.6)

The solutions a, �, z of Eqs. (1.5) tend exponentially with time to the solutions a*, �*, �h* of system (2.6) for
the same initial data.11 Hence, the problem of the self-excited oscillations of the initial system (1.1) (or the modified
systems (1.2) and (1.5)) reduces to an investigation of the comparatively simple autonomous system (2.6), which
allows of the use of standard analytical and asymptotic small-parameter methods. Note that the analytical Lyapunov-
Poincaré methods3 enable one to establish the existence and stability conditions and give a constructive procedure for
constructing the stationary periodic solution of Eq. (2.6). Moreover, they are applicable both to the initial Eq. (1.1) and
to the modified Eqs. (1.2), (1.5). The Krylov-Bogolyubov averaging method13,14 enables system (2.6) to be simplified,
enables the variables a and � to be separated and enables one to determine the stationary points for the amplitude
equation, corresponding to self-excited oscillations, and also enables the transients to be investigated.

3. Approximate solution of the problem of self-excited oscillations

We will apply an asymptotic procedure for separating the variables a and � to system of Eq. (2.6).13,14 More
accurately, we will construct the approximate replacement (a, �) by (�, 	) such that the right-hand sides of the
equations for the “averaged” amplitude � and phase 	 will be independent of the fast variable 	. These replacements
and equations are constructed in the form of asymptotic expansions in powers of �j (j = 0, 1, 2, . . .)

(3.1)

(3.2)

The unknown functions uj, vj together with �j+1, �j+1 are constructed recurrently after substituting replacement
(3.1) into Eq. (2.6) and taking into account representations (3.2) for �̇, 	̇. By equating coefficients of like powers of
�j we can successively obtain �1, �2, . . . , �j+1, �j+1 as the mean over 	 of the corresponding known expressions,
and also determine the unknowns u1, v1, . . . , uj, vj . In particular

(3.3)

(3.4)
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The angular brackets denote averaging over the phase 	. The functions Aj and �j are obtained by substituting z = �h*

into the expressions for A*, �* and expanding in powers of �j

(3.5)

Further expansions of the functions Aj and �j (3.5) involve substituting a and � (3.1), which occurs in expressions
(3.4).

The functions �1(�), �1(�) determine the system of Eq. (3.2) of the first approximation (terms O(�2) are ignored).
They enable us to calculate the required unknowns a and � with an error O(�), and also z = �h with an error O(�2) in
the section t1 ≤t ≤ L�−1, where t1 ∼ ln(�−1), for system (1.5). As a result we will obtain the variables x, ẋ, ẍ or ϑ. For
the solution of the first approximation it is unnecessary to construct the functions u1 and v1.

The solution of the second approximation with error O(�2) in the section 2t1 ≤ t ≤ L�−1 requires integration of
Eq. (3.2) taking the terms �2�2, �2�2 into account (terms O(�3) are dropped). This is also done by standard methods:
separation of the variables, expansion in powers of �, numerical calculations in a short interval of the slow time 
 = �t,

1 ≤ 
 ≤ L etc. For these constructions one can substitute expressions of the first approximation into terms of the order
of �2 and into the functions u1 and v1.

To obtain and investigate the self-excited oscillations, it is of particular interest to determine the stationary points
�∗

(j) of the first Eq. (3.2) for � in the j-th approximation in �

(3.6)

The simple sufficient conditions for the existence, uniqueness and stability of self-excited oscillations for fairly
small � > 0 are obtained by analysing the roots of (3.6) of the first approximation, i.e. for � = 0

(3.7)

We will assume that the required root �∗
(1) (3.7) exists and is simple: �′

1(�∗) �= 0. Then, for sufficiently small � > 0
Eq. (3.6) allows of a �-close �∗

(1) root �∗
(j)(�). It can be calculated with the required degree of accuracy with respect

to � by expansions or successive approximations. The self-excited oscillations of the initial system for which the
limit cycles are constructed in the phase space x, ẋ, ẍ, for example, in the form of projections onto the (x, ẋ) plane,
etc., correspond to it. The periodic solution, i.e. the self-excited oscillations, will be asymptotically orbitally stable
or Lyapunov stable if �′

1(�∗) < 0 and unstable in the case of the opposite inequality. Eq. (3.6) may allow of several
simple roots; the above conclusions hold for each of them.

The situation when the root �* is k-multiple, i.e. the following relations hold for it

(3.8)

requires an additional investigation based on methods of the theory of implicit functions (Weierstrass’ theorem16). In
particular, if k = 2, the required quadratic root �∗

(j)(�) is constructed as a function of � in the form of expansions in

powers of � = �1/2

(3.9)

The standard procedure reduces to algebraic equations, relating the unknown coefficients �m (m = 1, 2, . . .). They
can be solved successively with corresponding fairly obvious assumptions (see below)

(3.10)

Expressions (3.10) indicate the splitting of the generating solution into a quantity O(
√

�). If the known conditions
break down, additional investigations are required. In the general case of a k-multiple root (3.8), the expansions are
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carried out in powers of the small parameters �i (Refs. 3,16)

(3.11)

The integer (different) denominators kl in relations (3.11), where 1 ≤ kl ≤ k, l = 1, 2, . . ., l*, which define fractional
powers of the small parameter, can be found in the standard way.16 For small values of k = 2, 3, . . ., in applied calculations
it is assumed that kl = 1/2, 1/3, . . . and the problem of the compatibility (solvability) of the equations for unknown �l1,
�l2, . . . is investigated. In this case, analogous to (3.10), non-uniqueness of the solution (“splitting”) may occur.

The situation when �1(�) 0 is of particular interest in theoretical and applied aspects. In this case, the govern-
ing equation is �2(�) = 0. An analysis of the conditions for the existence, uniqueness and stability of self-excited
oscillations is carried out in the same way as above.

Note that an investigation of the problems of the existence, uniqueness, stability and qualitative behaviour of a
self-excited oscillatory system is usually carried out using the system of the first approximation (3.2), in which terms
O(�2) are dropped. By introducing the slow argument 
 = �t, the main equation (for �) is reduced to a form that is
independent of the important parameter �, which defines the self-excitation quantity. For applied problems, however,
the behaviour of the system for moderately large specific values of �, rather than for infinitesimal values, may be of
interest. Then, the solution constructed can be used as the initial approximation in numerical-analytical procedures
of continuation with respect to the parameter.9 An increase in � in problems of the class considered often leads to
bifurcations of the self-excited oscillations.

For a preliminary local investigation of the possible evolution of the oscillation modes, it may turn out to be useful
to construct and analyse a solution taking into account higher powers of �, i.e. terms �2�2, �3�3, etc. in expansions
(3.2) and a change in � over a wider range (of the order of unity). Note that an increase in the values of the parameter
� and “escape” beyond the limits of the region, formally assigned by the methods of asymptotic theory or regular
expansions, has an extremely conditional form of directing considerations. This approach is used below to investigate
thermomechanical self-excited oscillations of a system based on solution of the second approximation of the asymptotic
methods of local integral manifolds and averaging (see above).

4. Self-excited oscillations in thermomechanical systems (the second approximation)

As an example of the use of the procedure for the asymptotic analysis of quasi-linear third-order systems described
above, we will consider the problem of the occurrence of self-excited oscillations in thermomechanical systems. The
governing Eq. (1.2) has the following form in dimensionless variables

(4.1)

In particular, the system describing the self-excited oscillations of a Helmholtz resonator7,10 reduces to an equation
of the form (4.1). The expressions f = −�̇, g = ξ − ξ3 of system (1.1) correspond to Eq. (4.1).

We will change to a system of equations in standard form (1.5) using formulae (1.4), in which now x = . As a result
we obtain the following expressions for the right-hand sides of system (1.5)

(4.2)

Changing from the function z to the function h, using relations (2.1) and (2.2), we can simultaneously obtain
expressions for the first two terms of the expansion of h in series of perturbation theory. Then, from the calculated
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expressions for H∗
1 and H∗

2 , the first two approximations for h can be found using formulae (2.5)

(4.3)

(4.4)

The coefficients of the trigonometric polynomials for h2, according to relations (2.2) and (2.4), have the form

We will investigate the first and second approximations of the functions of the amplitude and phase, to analyse the
behaviour of which it is sufficient to know the expression for h to terms of the first order of smallness, i.e. taking the
expression for h1 (4.3) into account.

Using system (2.6), after determining h1 from system (1.5), we analyse a standard second-order system with rotating
phase. Substituting the expansions of the amplitude and phase, and also their derivatives (3.1) and (3.2) into system
(2.6) and separating the orders of perturbation theory and averaging, we successively obtain expressions for �1,2 and
�1,2

(4.5)

(4.6)
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The coefficients a�,	, b�,	, c�,	 in the expressions for �(2) (4.5) and �(2) (4.6) depend on �, � and �, and are given
by

A comparison of the expressions for the functions � and �, calculated to the first and second orders of smallness,
shows that the inclusion of second-order terms leads to a change in the degree of the polynomial dependence of the
right-hand sides of the derivative of the amplitude from the third to the fifth, and of the phase from the second to the
fourth. It turns out then that the coefficients of higher powers of � are proportional to the parameter �. Hence, the use
of analytical procedures of expansion in � to investigate the roots � of the equation

(4.7)

i.e. to analyse the stationary points of system (2.6), leads to the possibility of constructing roots of Eq. (4.7) that
are regular in �. The use of the methods of perturbation theory in this case is complicated by the dependence of the
coefficient of polynomial (4.5) on the other parameters of the problem, when the smallness of � is compensated by the
other parameters. Hence, the roots of Eq. (4.7) were analysed accurately.

After constructing and investigating the roots of the functions �*(�, �, �) (4.7), the stationary addition to the average
frequency can be determined, i.e. the function

(4.8)

In the space of the parameters �, �, � one can investigate the behaviour of the function �(2). For applications the
sign-definiteness of �(2) (4.8) is of considerable interest, and also the finding of the values of the parameters for which
�(2) = 0 or �(2) ≶ 0.

We will analyse the behaviour of system (2.6) in the simpler case when there is no dissipation �(� = 0), and we will
determine the regions in which self-excited oscillations exist. To do this we will construct a pattern of the change in
the types of dependence of �(2) and �(2) on � when the parameters � and � vary.

When � = 0 the parameters � and � are grouped in the function �(2) in such a way that the pattern becomes “quasi-
uniform” (i.e. it depends implicitly on the parameter �) and can be reduced to the form shown in Fig. 1. In this case,

Fig. 1.



512 L.D. Akulenko et al. / Journal of Applied Mathematics and Mechanics 70 (2006) 504–515

Fig. 2.

the limits of the oscillation modes are determined by the parameters ��, b and ��, c, the values of which depend on the
parameter �

An analysis of the stationary points of the oscillation amplitude, carried out using (4.7), shows that in the range of
variation of � from 0 to ��, b the unique stable point of self-excited oscillations is the point with � = ��,1, when �(2)

vanishes (curve I).
On transferring to the next interval up to the point ��, c, the derivative of �(2) at zero decreases, and the equilibrium

position becomes weakly unstable. In the neighbourhood of this point it is possible for oscillatory modes to exist over
a limited time interval, after which an increase in the perturbations will lead to a loss of stability (curves II and III).
A further increase in � (� > ��, c) leads to the occurrence of two stable equilibrium positions � = 0 and � = ��, 2, in the
neighbourhood of which self-excited oscillations occur, and one more unstable stationary point � = ��,1 appears (curve
IV).

In order to investigate the nature of the change in the average frequency of the oscillations, we will analyse the
pattern of the qualitative behaviour of the function �(2), by first noting that, unlike the graphs for the amplitude, the
qualitative dependence of the oscillation frequency is actually two-dimensional. In Fig. 2 we show the permissible
forms of the fourth-order curves �(2)(�). The regions in Fig. 3, bounded by the curves �	, b (the curve with number 1)
and �	, c (the curve with number 2) correspond to the numbers of the curves in Fig. 2. It can be seen that the boundaries
of the regions in which the modes of the oscillation frequency change are determined by three values of the parameter
� and the two curves of �	, b and ��, c, determined from the results of an analysis of the behaviour of the biquadratic
function �(2)(�), in the form

Fig. 3.
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Fig. 4.

Fig. 5.

The straight lines � = �1 and � = �2 are the vertical asymptotes of the hyperbolae �	,b and �	,c respectively.
Comparing the position of the stationary points with the position of the zeros of the function �(2), we can determine

the corrections to the frequency of the oscillations compared with the unperturbed state. To do this we additionally
set boundaries of the regions with qualitatively different behaviour of the functions �	,b, �	,c, ��,b, ��,c (curves 1,
I, 2, II respectively) on a single diagram (Fig. 4). The points of intersection of the boundary curves are denoted by

�3(�3 =
√

−7
√

73/2 ≈ 0.62128) and �4(�4 = √
3).

Analysis shows that the oscillation frequency in the neighbourhood of the second stable stationary point will always
be reduced: �(+)

��1
< 0 (the superscript plus denotes that this quantity relates to the stable stationary point, and the

plus-minus refers to a slightly unstable point); in the neighbourhood of the quasi-stable zero it will always increase:
�

(±)
0 > 0(�(0)

�,b < � < �
(0)
�,c, � < �4); finally, for large values of � > �

(0)
�,c and � < �4 the zero becomes a stable point,

and the oscillation frequency in its neighbourhood will be reduced: �
(+)
0 < 0.

When the dissipation � is taken into account, expressions (4.5) and (4.6) lead to a considerable complication of the
patterns of the rates of change of the amplitudes and phase of the oscillations. Oscillation modes arise which were not

Fig. 6.



514 L.D. Akulenko et al. / Journal of Applied Mathematics and Mechanics 70 (2006) 504–515

present in the previous case. The pattern of the change in the oscillation rates becomes “quasi-two-dimensional” (the
limits of the oscillation modes turn out to be dependent on the parameter �), while the frequencies are three-dimensional.
The results of an analysis of the patterns of the rates of change of the amplitudes are shown in Figs. 5 and 6.

The boundaries of the oscillation modes for the patterns of the rates of change of the oscillation amplitudes in the
second approximation �(2)(�) for � �= 0 are defined by the quantities

The permissible forms of the relations �(2)(�) are denoted by Roman numerals in Fig. 5, and in Fig. 6 they indicate
the regions of values of the parameters (�, �) corresponding to them. The boundaries of the oscillation modes are
denoted in Fig. 6 by Arabic numerals: the two single-valued curves ��

1,2, curves 2 – ��
y and curve 3 – ��

p correspond
to the two-valued curve 1.

Further investigations confirm that, in the third-order self-excited oscillatory system (4.1) considered, bifurcation
of the steady oscillation modes is possible when the self-excitation parameter � increases. Preliminary calculations
showed that when � ≈ 1, � ≈ 0.5, � = 0, bifurcation occur in the neighbourhood of the value � ≈ �∗ = √

4/3,
corresponding to quasi-linear self-excited oscillations.10 Analysis of the oscillation modes over a wide range
of variation of the parameter � for different values of � and � requires the development of a highly accurate
algorithm for constructing periodic solutions in combination with the procedure of continuation with respect to the
parameters.8–10
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